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Abstract-Linear stability of natural convective flow in an annulus between two concentric horizontal 
cylinders is studied numerically. In the medium-sized annulus with relative inverse gap ratio (ratio of inner 
diameter to gap width) between 2.1 and 10.0, the basic two-dimensional flow is found to be unstable with 
respect to three-dimensional disturbances. Critical Rayleigh numbers above which the two-dimensional 
basic flow is unstable show good agreement with experimental results. The disturbance velocity distribution 

obtained by the stability analysis suggests that the instability is mainly caused by buoyancy effects. 

1. INTRODUCTION 

NATURAL convection in an annulus between two hori- 
zontal concentric cylinders has attracted considerable 
attention because of its theoretical importance and 

wide technical applications including thermal storage 
and transmission systems. Extensive surveys on this 

configuration have been given by Kuehn and 
Goldstein [ 11, and recently by Fant et al. [2]. 

In an experimental investigation on characteristics 
of convecive flow of air in a horizontal annulus, Powe 

et al. [3] have presented a comprehensive description 
of different flow regimes depending on the Rayleigh 
number and gap width. Steady unicellular two- 
dimensional flow is observed at low values of 
the Rayleigh number. As the Rayleigh number is 
increased above a critical value, different unsteady 
flow patterns are found to occur depending on 
gap width : two-dimensional oscillatory pattern for 
a wide gap (inverse relative gap width u being 
smaller than 2.8) three-dimensional spiral flow 
for a moderate gap (2.8 < g < 8.5) and multicellular 
flow for a narrow gap (cr > 8.5). For a wide gap, un- 
steady crescent-shaped flow oscillating about the 
horizontal axis of cylinders appears when the Ray- 
leigh number exceeds a critical value about 105. 
A detailed description of two-dimensional oscil- 
latory pattern is given in ref. [4]. For a narrow gap, 
the two-dimensional multicellular flow consisting of 
one or more pairs of small counter-rotating cells in 
the top region of the inner cylinder occurs. However, 
the critical value obtained from experimental obser- 
vations [3, 51 shows substantial discrepancy. In an 
annulus with moderate gap, flow pattern of three- 
dimensional spiral nature has been observed for Ray- 
leigh number larger than about 1800. Experimental 
results, quoted in refs. [3, 61, as to the point at which 
the unicellular convection becomes unstable show 

reasonably good agreement. However, Grigull and 
Hauf [7] have reported that the spiral flow is observed 
even in a wide gap annulus, e > 2.08. 

Numerical computations [8, 91 confirm the tran- 

sition to two-dimensional multi-cellular flow between 

narrow horizontal annulus for air at high Rayleigh 
number. The transition Rayleigh number, however, 
shows some discrepancy. Although several authors [8, 
10, 1 l] have carried out numerical investigations on 
the three-dimensional convective flow, except for ref. 
[8], they consider the steady convection in a wide gap 

annulus and find that nearly two-dimensional crescent 
eddies establish in the central region and that the fluid 
particle moves along a coaxial double helix. Rao et 

al. [8], on the other hand, have confirmed the steady 
three-dimensional spiral convection occurs in a 
moderate gap for a fluid of high Prandtl number 
(Pr = 5000). 

In this study, in an attempt to predict the critical 

Rayleigh number above which a three-dimensional 
spiral flow manifests and to obtain a clearer under- 
standing of the spiral convection, we examine sys- 
tematically the linear stability of steady two-dimen- 
sional (unicellular) convection of air (Pu = 0.71) in an 
annulus of medium-sized gap (2.0 < cr < 10.0) against 
three-dimensional disturbances. The basic two- 
dimensional velocity and temperature fields are ob- 
tained numerically, from lack of analytical expres- 
sions valid for a high Rayleigh number convection. 

TO study the stability of steady two-dimensional 
convection, each variable in the governing equations 
is decomposed in the form 

q(r,4,z,t) = QS(r,~)+&qp(Y,~,z,t), & << 1 (1) 

q,(r, 4, z, t) = Re My, 4, t) exp (ikz)], (2) 

where QS denotes the basic flow and qp the pertur- 
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NOMENCLATURE 

b 

E 

9 
k 
k 

L 
PI 
RN 
Rc 

buoyancy force 

kinetic energy 
gravitational acceleration 
axial wave number 
unit vector in axial direction 
gap width of the annulus, R,,- R, 

Prdndtl number. V:X 
Raylcigh number. g/I(T, - T,)L’~xv 
real part of complex number 

R,, R,, radii of the inner and outer cylinders. 
respectively 

I dimensionless radial coordinate 
.Y complex growth rate, s, + is 
t dimensionless time 
V velocity for basic flow. (V,, V+, 0) 

V velocity 
z dimensionless axial coordinate. 

Greek symbols 
a thermal diffusivity 

bation. Expression (2) in which the perturbation is 
assumed to vary sinusoidally in the axial direction is 
inferred from the method of normal mode [ 121. owing 
to the two-dimensionality of basic flow. Inserting 

equations (I) and (2) into governing equations, sub- 
tracting the basic flow and neglecting terms O(E’) and 
higher, we obtain two-dimensional linear evolution 
equations for 4 with the axial wave number k as a 

parameter. The resulting equations for 4 are solved 
by time-marching integration under suitably chosen 
initial conditions. After a sufficiently long time. the 
solution of the initial value problem for the per- 
turbation i(r, 4, t) will approach the most unstable 
mode of the cigenvalue problem (which is independent 

of initial conditions) resulting from the usual nor- 
mal mode analysis for the linearized disturbance 
equations : 

cj(r, d,, I) - Q(r. C/I) exp (st). s = .s, + is, as t ---f ‘r_, 

(3) 

from which we can infer the growth rate s, and the 
frequency s, of the most unstable mode. 

In the present study, the problem is formulated in 
terms of vector potential, vorticity and temperature, 
and calculations are carried out by using the finite 
difference method. The formulation has advantages 
in that the equation of continuity is automatically 
satisfied and that the pressure distribution need not be 
obtained. Computations are carried out in the ranges 
of 10’ < Ru < lo5 and 2.0 < (T < 10.0 for a fluid of 
Prandtl number 0.71 (air). The critical Rayleigh 
numbers determined from the linear stability analysis 
show fairly good agreement with experimental 

0 thermal expansion coefficient 
0 temperature for basic flow 
0 temperature 
1’ kinematic viscosity 
ci inverse relative gap width. 2 R,: 1. 

(1) azimuthal coordinate 

T 

stream function for basic Hoh 
vector potential 

z 
vorticity 
\,orticity for basic flow. 

SubscrIpts 

r. 4,~ radial, azimuthal and axial 
coordinates 

c critical value 
i inner cylinder 

0 outer cylinder 
s two-dimensional steady basic flow 

solution 

P perturbation. 

results on the transition to the three-dimensional 
spiral convective flow presented in Powc cc ul. [3]. 

2. MATHEMATICAL FORMULATION AND 

COMPUTATIONAL METHOD 

Laminar natural convective flow in an infinite hori- 
zontal annulus between two concentric circular cylin- 
ders with inner and outer radii R, and R, is con- 
sidered. Figure 1 shows the geometrical model and 
the cylindrical coordinte system (1.. 4. z), angular 
coordinate 4 being measured counterclockwise from 
the upward vertical plane through the axis of cylin- 
ders. The inner and outer cylinder surfaces arc main- 
tained at different uniform temperatures r, and r,, 
(T, > T,,). Adopting the Boussinesq approximation 01 
neglecting the variations in physical properties, except 
for the density in the buoyancy terms. and introducing 
the vector potential + such that 

v=vx+. (4) 

the dimensionless governing equations arc written [ 131 
as 
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aa 
Z+(v.V)o = (w.V)v+PrV*o+RaPrVxb (5) 

v’* = --w (6) 

at9 
z +(v-vy = v20, 

where o is the vorticity, b = (8~0s q5, -@sin 4, 0) 
the buoyancy force, 6 the temperature. The vorticity 
transport equation (5) has been obtained by taking 
curl of the Navier-Stokes equations. Note that the 
equation of continuity is satisfied identically and that 
explicit appearance of the pressure is avoided. The 
dimensionless parameters Ra and Pr are defined as 

Ra = gjl(T - T,)L’/ctv, Pr = v/a, (8) 

where g is the acceleration due to gravity, jI the ther- 
mal expansion coefficient, L the gap width (R,- Ri), 
CI the thermal diffusivity and v the kinematic viscosity. 
Equations (5)-(7) have been put into dimensionless 
form by taking L, L2/c(, a/L as characteristic length, 
time and velocity, respectively. Dimensionless tem- 
perature 0 is defined by 0 = (T- TO)/( T, - T,,). 

The boundary conditions on rigid boundaries are 
expressed as [ 141 

v, = v+ = v, = 0 

a(r*J/ar = *+ = ijZ = 0 atr = ri,rO 

W, = 0, W$ = -av,jar, W, = av,jar i 
(9) 

0= 1 at r= ri and 8=0 at r =r, (10) 

where ri and r, are dimensionless radii of inner and 
outer cylinders, respectively. 

2.1. Two-dimensional basic flow equations 
For two-dimensional flow, the above equations (5)- 

(7) degenerate into the conventional vorticity-stream 
function formulation, by letting the z component of 
velocity equal to zero and all the variables be inde- 
pendent of z : 

v = V(r, 4, l) = (V,, V4, 0) 

w = Cl(r, 4, t)k 

G = ‘W, 4, t)k 

0 = @(r, 4, t), 

where k denotes the unit vector along the z-axis. 
The dimensionless governing equations for two- 

dimensional convective flow are given as 

q q 

= PrV2R-RaPr ~sin++~cos$ 
r% > 

(11) 

V2Y = -a (12) 

v=!?!? 
r 

v =_E 
r&p’ @ dr (13) 

ao ao ao 
~+Vr,+V,~=V20. (14) 

Boundary conditions on the cylinder surfaces are 
written as follows : 

Y=O, Q=-g, O=l, atr=r, (15) 

Y = 0, Q = - g, 0 = 0, at r = rO. (16) 

After a sufficiently large time, the velocity and 
temperature fields satisfying equations (1 l)-( 14) 
approach steady states for Rayleigh numbers in the 
range considered in the present work (IO3 < 
Ra < 105). 

2.2. Linear stability formulation 
The stability of the basic two-dimensional steady 

convective flow to small disturbances is investigated, 
following the standard methods of linear stability 
theory [12]. We decompose the perturbed flow into 
the form : 

v=V,(r,~)+&vp(r,~,z,t) 

w = R,(r,4)k+EWp(r, 4v, t) 

$ = Y,(r,~)k+E~‘p(r,~,~,t) 

e=o,(r,~)+Eep(r,~,z,t). (17) 

where subscripts s and p represent the basic steady 
flow and the perturbation, respectively. Hereafter, we 
delete the subscripts s and p for brevity. Inserting 
expressions (17) into equations (5)-(7) subtracting 
the basic steady part and discarding 0(s2) and higher 
order terms, we obtain a system of linear equations 
for the perturbations. Since the equations are linear 
and do not depend explicitly on z, we can assume the 
sinusoidal variation in the z-direction. Further, tak- 
ing into consideration the reflectional symmetry in z 
(z + -z, v,-+v,, u4 +v4, v,-+ -v,, O-e), we 
write the perturbation as 

I 

o, = &(r, 4, t) cos kz 

ZJ@ = G,(r, 4, t) cos kz 

L), = fi,(r, 4, t) sin kz 

B = &r, 4, t) cos kz 

1 

w, = &(r, 4, t) sin kz 

i 

tjr = $Jr, 4, t) sin kz 

w4 = 6&(r, 4, t) sin kz ti4 = $,(I, 4, t) sin kz, 

0, = &(r, 4, t) cos kz $Z = $&,At)coskz 

(18) 

where k is the dimensionless axial wave number. Fac- 
toring out the axial(z-) dependency, the final form of 
the linearized disturbance equations in which the axial 
wave number k appears as a parameter is given as 
follows (dropping the circumflex ^) : 
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Vi0. 

0; = r‘: + i , (2’ 

(y2 rir + ~-9 m-9 -k’. 
r- ?(b- 

The boundary conditions arc 

( l9a) 

(l9b) 

(l9c) 

(2Oa) 

(20b) 

(2Oc) 

(2la) 

(21b) 

(2lc) 

(22) 

(23) 

Since the above linear disturbance equations are 
homogeneous and do not depend on t explicitly, the 
solution will eventually show the exponential behavior 
in time: 

y(r, 4, t) - @v, C#I) c”. s = s, + is, t B I, (24) 

where 4 denotes the most unstable (least stable) mode 
of the eigenvalue problem resulting from the normal 
mode analysis of equations (19)-(22). It is to be noted 

that the complex rate of growth s. which depends on 
o. Ra, Pr and k. corresponds to that of the most 
unstable mode and. thus. the asymptotic results ol’thc 
direct simulation implemented in this study provide 
information on the most unstable mode only. Numeri- 
cal results show that, for the present problem, c is real 
(i.c. .s, = 0) for (T 3 2.1. 

2.3. C‘ompututionnl methods 

The basic Row equations (I I)-( 14) and the lincar- 

ized disturbance equations (19)--(X?) are solved 
numerically by employing the computational scheme 
described in refs. [ 15, 161. The parabolic-type equa- 
tions (1 1). (14). (19) and (22) are cast into the finite 
difference form using the leap-frog method of Dufort 
Frankel for the diffusion and time derivative terms 

[ 171. and central ditferencing for the convection terms. 

The Poisson equations (12) and (20) are discretized 
by use of five-point formula, and the resulting equa- 

tions are solved by the direct method of cyclic even 
odd reduction [ 181. At each time level, the unsteady 
calculation has been completely iterated to conver- 
gence. and sufficiently small time steps (10 ’ < 
At < IO ‘) are used to produce time-accurate sotu- 
tions. The basic flow is assumed to reach a steady 
state when the relative difference of each dependent 

variable at every mesh point becomes less than 10 ‘. 
The procedures to obtain the transition Rayleigh 

number for a given axial wave number k are as follows. 

(I) At a properly guessed Raylcigh number. the 
steady two-dimensional convective flow is numerically 
obtained. 

(2) The disturbance equations arc integrated under 
given initial conditions. until the asymptotic eupon- 

cntial behavior is established. Typically. the expon- 
ential behavior is clearly seen for t > 2.5 (Fig. 2). 

(a) Ra = 1700 

(b) Ra = 1900 

Fro. 2. Evolution of dependent variables I‘,. 0 and kinetic 
energy E for CT = 5, k = 3.05. (a) Ra = 1700. (b) Ra = 1900. 



Stability of natural convective flow between cylinders 4177 

(3) From the exponential behavior, the rate of 

growth s, for each dependent variable qm is deter- 
mined by using two successive values at a chosen 

point : 
In M&Z- ‘) 

s, = 
At ’ 

where the superscript n denotes the number of time 
steps. To ascertain that s, is independent of choice of 

the location, the same calculations are performed at 
two other points. Typically, when t > 3.0, the growth 
rate s, converges to one and the same constant within 
0.5% relative error for all points and dependent vari- 
ables examined (Fig. 2). 

(4) If the absolute value of s is less than 10m5, 
the given Rayleigh number is taken as the transition 
Rayleigh number. If not, another Rayleigh number 
is chosen and the procedures (l)-(3) are repeated. 
Having determined the growth rates s(‘) and s(‘) for 

Rayleigh numbers Rat ‘) and Rd’), the Rayleigh num- 
bers for the next calculation is chosen by 

Ra = Rac2’ - 
s(2)(Ra’Z’ -&“‘) 

p) _-s(1) 

For most cases, four or five iterations give a 
sufficiently accurate value of the transition Rayleigh 
number. 

Approximate values of the critical Rayleigh Ra, 
and the critical wave number k, for a given e are 
determined from the minimum of the quadratic 
interpolation polynomial constructed from three pairs 
of wave number and the transition Rayleigh number 

(Fig. 4). The critical values remain unchanged after 
one iteration or two. 

Calculations of both the basic flow and disturbance 
equations are based on the same grid system. 
Although the optimal grid system may depend on Ra, 
(T and k, a uniform (40 x 128)(r,r$) mesh for the entire 
annular region (O-271) is found to be adequate from 
grid dependency tests for three gap widths, the results 
of which are given in Table 1. The results listed in 

Table 1. Grid dependency test 

Gap ratio Grid (r, 4) Ra 

CT=3 30x64 
(k = 3.12) 30 X 128 

40x64 
40 x 128 
40 x 256 
50x64 
50 x 128 
50 x 256 

0=5 30 x 128 
(k = 3.12) 30 x 256 

40 x 128 
40 x 256 
50 x 128 

0=8 30 x 128 
(k = 3.00) 30 x 256 

40 x 128 
40 x 256 

1987.2 
1985.7 
1998.1 
1996.8 
1996.5 
2003.1 
2001.8 
2001.5 

1793.1 
1792.1 
1801.0 
1800.5 
1805.3 

1734.7 
1733.0 
1742.8 
1741.3 

Table 1 coincide within relative error of 0.5% and 

show more sensitive dependency on r-grid compared 

with &grid. 
The computations were performed on a CRAY-2S 

supercomputer. Determination of the critical Ray- 
leigh number for a given gap width required a total 
CPU time of about 1 h, but the amount of CPU time 

increased considerably for cr larger than 8.5. 

3. COMPUTATIONAL RESULTS AND 

DISCUSSION 

Computations were performed over a range of rela- 

tive inverse gap ratio, 2.0 d 0 < 10, for air 
(Pr = 0.71). 

Each successive basic flow calculation was carried 

out using the previously obtained steady solution as 
an initial guess. For disturbance equations, several 
initial conditions were used : 

4 = .M) ~0s (9 - Co 

v4 =&(r)sin(4-a) 

0 = (r-rJ(r-r,Jcos(~-a), 

where we have chosen a = 0 or n/4, and quadratic or 
quartic polynomials satisfying no-slip conditions as 
fr(r) and f+(r). Final results are independent of the 
initial conditions and reveal the exact symmetry about 
the vertical plane through the axis of cylinders, 
although the computational domain is the entire 
annulus (0 < 4 < 2~) and initial conditions are asym- 
metric for a = 7c/4. 

Figure 2 illustrates typical temporal variations of 

disturbances for Rayleigh numbers above and below 
the transition Rayleigh number at a given axial wave 
number (k = 3.05) for e = 5. Regardless of the 
location and initial condition examined, disturbances 
increase (decrease) monotonically except for early 
stages (t < 2.0). Moreover, the influence of the initial 
condition vanishes in a short transient period (t < 0. I) 
and, hence, the evolutions of disturbances show nearly 
the same behavior regardless of initial conditions. 

Interpretation of the result according to equation (24) 
gives the growth (decay) rate of the most unstable 
(least stable) mode s, = 0.573 (-0.586) with s, = 0. 
Monotone exponential behaviors at sufficiently long 
times are always observed for 0 > 2.1. For 0 = 2, the 
disturbances decrease in an oscillatory manner even 

at Ra = 105. From Fig. 3, in which the time variations 
of disturbances at Ra = 2.5 x IO4 are shown, decay 
rate and frequency of the least stable mode are esti- 
mated as s, = - 1.055, si = 60.9. In Figs. 2 and 3, 
overall kinetic energy of disturbance over an axial 
period (2n/k) 

E=f 
‘0 2771 

ss 
2(~:+v~+v,2)rdrd~ (25) 

r, 0 
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FG. 3. Evolution of dependent variables c,, 0 and kinetic 
energy E for D = 2. k = 3.3. Rtr = 25000. 

is also shown as a function of time. The plots prc- 
sented in Fig. 2 suggest that the perturbed velocity 
and temperature fields evolve exponentially with the 
same growth rate and frequency ( = 0) independent of 
the location after clapsing a sufficiently long time. 

It may. therefore, be concluded that the principk of 

e.~c.lmz,ye of’stuhilities is valid for (T > 2.1 (i.e. .Y, = 0). 
In tug. 4, neutral curves above which the flow is 

unstable with respect to three-dimensional dis- 
turbances are depicted for cr = 2.5 and 10.0. FOI 
CT = 2.5. the minimum critical Rayleigh number RLI, 
and the critical axial wave number k, are found to 
be 2195.6 and 3.106, respectively. For (T = 10. from 
numerical results for two-dimensional steady basic 
flow. it was seen that the unicellular flow prevails for 
the Rayleigh number less than about 2300 and the 
bicellular for Rrr > 2900 and that between these two 
limits both patterns are possible according to initial 
conditions. The present results on basic flow are in 
excellent agreement with those reported in ref. [Y]. 

Ra 

FIG. 4. Neutral stability curves; (a) IT = 2.5, (h) 0 = IO. 
Between horizontal dashed lines both unicellular and bicellu- 

lar basic flows are possible. 

The neutral curve for each basic flow is shown in Fig. 
4(b) : solid line for unicellular basic flow and dashed 
for bicellular flow. As seen in the tigurc, the bicellular 
flow is always unstable with respect to a thrcc-dimcn- 

sional disturbance with the axial wave number in the 
range 1.X c k < 4.2. Fant et trl. [Y] have argued that 
the transition to multicellular convection from uni- 
cellular How in a narrow gap is caused by the thcrrnal 
instability between horizontal parallel planes. If this 
argument IS admitted, the result that the bicellulat 
how is always unstable may be not unreasonable, since 

the instability in the present study can also be regarded 
as of thermal types. 

Figure 5 displays the disturbance velocity fields at 
Rayleigh number higher than the critical. In the tigure. 
the left half of the annulus presents the vector plot 01 
I’. +components of disturbance velocity and the right 
half the contour levels of z-component. It is seen that 
the disturbances are energetic in the top region of the 
annulus. which implies the instability is mainly caused 
by buoyancy etkcts. When the basic flow is biccllular. 
however. the energetic region moves towards the 
boundary between the counter-rotating eddies as the 
Rayleigh number increases (Fig. 5(c)). 

Figures 6 and 7 plot the critical Rayleigh number 
and the critical axial wave number as ;I function of in- 
vcrsc gap width (T. The critical Raylcigh number ob- 
tained from the present calculations shows fairly good 

agreement with the experimental results. Rao r’/ trl. 

WI carried out numerical calculations of thrce- 

dimensional spiral flow for Pu = 5000 and CT = 4.7 
and reported that the spiral flows arc observed at Ray- 
leigh numbers above 2700. It is masonable that our re- 

FIG. 5. Three-dimensional disturbance velocity distribution. 
Dashed lines represent negative contours. (a) o = 5. 
RU = 1900, (b) D = 10, Ra = 2500. basic flow is unicellular. 
(c) 0 = IO. Ru = 3000, basic flow is bicellular. For all casts. 

A = 3.05. 
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. ..__ Fkmpattern map by Powe et.a1.[3] 
-z--x Critical Ra by Present study 

4000 , 

FIG. 6. Critical Rayleigh number Ru, as a function of 6. 
Some experimental results are also shown ; after Powe et al. 
[3], Grigull et al. [6], Rao et al. [S]. Dashed line denotes the 

transition curve to 3-D flow suggested by Powe et al. [3]. 

suits show a lower critical Rayleigh number than Rao 
et al’s, since the present analysis calculates the Rayleigh 
numbers at which instability manifests and these 
values are presumably lower than those found by 
experiments. The figure shows that instability due to 
a three-dimensional disturbance occurs even in the 
region 2.1 < o < 2.8, which has been designated as a 
two-dimensional oscillatory regime by Powe et al. [3]. 
For e < 3, the critical Rayleigh number Ra, as well as 
the critical wave number k, increases abruptly as CJ 
decreases. On the other hand, in the region (T > 3 
(spiral flow regime), Ra, and k, vary slowly as CJ 
increases. To the best of the present authors’ know- 
ledge, no work reports explicitly the information on 
axial wave number of three-dimensional natural con- 
vection in a horizontal annulus. From Fig. 11 of Rao 
et al. [8] which plots the isotherms on the vertical 
symmetry plane for cs = 4.7, Ra = 2700 and Pr = 
5000, we can estimate roughly the axial wave number 
as 3.14. For the same inverse gap ratio, the present 
study gives the critical wave number 3.05, which 
shows both results are in good agreement despite the 
difference in Prandtl numbers. 

Although quantitative investigations of the spiral 
flow above the critical Rayleigh number require the 
analysis of three-dimensional full Navier-Stokes 

FE. 7. Critical wave number k, as a function of 6. 

equations, the disturbed velocity distribution of the 
most unstable mode can provide qualitative features 
of the flow slightly above Ra,, since only the most 
unstable mode grows exponentially and all other 
modes decay. The exponential growth of the most 
unstable mode will be altered by the nonlinear terms 
in the Navier-Stokes equations and eventually the 
amplitude of disturbances may settle at a finite value 

[la; 

Amplitude cc (Ra/Ra,- 1)“’ as RaJ Ra,. 

The plot of a superposition of the form Vs(r, 
4) +cvP(r, 4, z) will, thus, provide a help to get a first 
insight about the spatial structure of the spiral flow 
when Ra slightly exceeds Ra,. In Fig. 8, we have 
arbitrarily chosen E = 0.3. The figures show that 
except for the top region, in which three-dimensional 
flow structures are seen, the flow is nearly two-dimen- 
sional. The fact that the fluid particle paths and iso- 

front view side view 

? 
‘2 2h 

(b) 

FIG. 8. Fluid particle paths and isotherms on the vertical 
symmetry plane for o = 5, k = 3.05, Ra = 1900. (a) Particle 

paths, (b) isotherms. Wave length 1 = 2x/k. 



41x0 J. Y. CHOI and M.-IJ. KIM 

therms on the vertical symmetric plane are similar 
to those calculated by Rao et (11. [8] reinforces the 
assumption that the basic flow and the most unstable 
mode can provide features of the flow at a Rayleigh 
number slightly above Ra,. 

4. CONCLUSIONS 

Stability of two-dimensional natural convective 

flow between two concentric horizontal cylinders 
against infinitesimal three-dimensional disturbances 
is investigated for a fluid of Prandtl number 0.71 (air). 

The linearized disturbance equations are integrated 
numerically to obtain the most unstable (least stable) 

mode. 
In the range of 2.1 d 0 d 10.0, the critical Rayleigh 

number above which the basic flow is unstable is deter- 
mined as a function of the relative inverse gap ratio 
(T. Experimentally observed results on the transition 
to spiral flow [3] shows good agreement with those 

obtained from stability analysis. It is found that t/w 
principle of’e.~chw~gc~ of’.~tahilitics is valid and that the 
disturbances are energetic in the top region of the 
annulus, which implies that the instability mainly 
results from the buoyancy effects. It is inferred that 
the spiral flows at Rayleigh numbers slightly greater 
than the critical Rayleigh number will show thrcc- 
dimensional characteristics in the top region of the 
annulus and remain nearly two-dimensional in other 

regions. 
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